Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
2.
Emerg Infect Dis ; 29(4): 862-865, 2023 04.
Article in English | MEDLINE | ID: mdl-36958011

ABSTRACT

To assess dynamics of SARS-CoV-2 in Greater Accra Region, Ghana, we analyzed SARS-CoV-2 genomic sequences from persons in the community and returning from international travel. The Accra Metropolitan District was a major origin of virus spread to other districts and should be a primary focus for interventions against future infectious disease outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Ghana/epidemiology , Biological Evolution , Disease Outbreaks
3.
Ghana Med J ; 57(2): 97-101, 2023 Jun.
Article in English | MEDLINE | ID: mdl-38504750

ABSTRACT

Objective: This study aimed to determine the duration of SARS-CoV-2 clearance in persons in Ghana. The research question was whether the duration of virus clearance in Ghana matched the 14 days recommended by the World Health Organization (WHO); this had direct implications for transmission, which was key in managing the COVID-19 pandemic. Design: This was a retrospective analytical study. Setting: All facilities that submitted clinical specimens to Noguchi Memorial Institute for Medical Research (NMIMR) for SARS-CoV-2 diagnosis between March to June 2020 were included in the study. Interventions: Samples from 480 persons who tested positive for SARS-CoV-2 by RT-PCR from March to June 2020 at NMIMR and submitted at least two follow-up samples were retrospectively analysed. Individuals with two consecutive negative RT-PCR retesting results were considered to have cleared SARS-CoV-2. Results: The median time from the initial positive test to virus clearance was 20 days (IQR: 5-56 days). This was six days longer than the WHO-recommended 14 days, after which infected persons could be de-isolated. Sputum and nasopharyngeal swabs proved more sensitive for detecting viral RNA as the infection progressed. At a significance level of 0.05, age and sex did not seem to influence the time to SARS-CoV-2 clearance. Conclusions: The median time to SARS-CoV-2 clearance in this study was 20 days, suggesting that SARS-CoV-2 infected persons in Ghana take longer to clear the virus. This finding calls for further investigations into whether patients who remain PCR positive continue to be infectious and inform isolation practices in Ghana. Funding: The study was supported by the Ministry of Health/ Ghana Health Service through the provision of laboratory supplies, the US Naval Medical Research Unit #3, the World Health Organization, the Jack Ma Foundation and the Virology Department of Noguchi Memorial Institute for Medical Research, University of Ghana. Research projects within Noguchi Memorial Institute for Medical Research contributed reagents and laboratory consumables. However, the authors alone are responsible for the contents of this manuscript.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Retrospective Studies , COVID-19 Testing , Pandemics , Ghana/epidemiology
4.
Ghana Med. J. (Online) ; 57(2): 97-101, 2023. tables
Article in English | AIM (Africa) | ID: biblio-1436154

ABSTRACT

Objective: This study aimed to determine the duration of SARS-CoV-2 clearance in persons in Ghana. The research question was whether the duration of virus clearance in Ghana matched the 14 days recommended by the World Health Organization (WHO); this had direct implications for transmission, which was key in managing the COVID-19 pandemic. Design: This was a retrospective analytical study. Setting: All facilities that submitted clinical specimens to Noguchi Memorial Institute for Medical Research (NMIMR) for SARS-CoV-2 diagnosis between March to June 2020 were included in the study. Interventions: Samples from 480 persons who tested positive for SARS-CoV-2 by RT-PCR from March to June 2020 at NMIMR and submitted at least two follow-up samples were retrospectively analysed. Individuals with two consecutive negative RT-PCR retesting results were considered to have cleared SARS-CoV-2. Results: The median time from the initial positive test to virus clearance was 20 days (IQR: 5-56 days). This was six days longer than the WHO-recommended 14 days, after which infected persons could be de-isolated. Sputum and nasopharyngeal swabs proved more sensitive for detecting viral RNA as the infection progressed. At a significance level of 0.05, age and sex did not seem to influence the time to SARS-CoV-2 clearance. Conclusions: The median time to SARS-CoV-2 clearance in this study was 20 days, suggesting that SARS-CoV-2 infected persons in Ghana take longer to clear the virus. This finding calls for further investigations into whether patients who remain PCR positive continue to be infectious and inform isolation practices in Ghana.


Subject(s)
Humans , Male , Female , Signs and Symptoms , Middle East Respiratory Syndrome Coronavirus , SARS-CoV-2 , COVID-19 , COVID-19 Nucleic Acid Testing
5.
Nat Commun ; 13(1): 2494, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35523782

ABSTRACT

The COVID-19 pandemic is one of the fastest evolving pandemics in recent history. As such, the SARS-CoV-2 viral evolution needs to be continuously tracked. This study sequenced 1123 SARS-CoV-2 genomes from patient isolates (121 from arriving travellers and 1002 from communities) to track the molecular evolution and spatio-temporal dynamics of the SARS-CoV-2 variants in Ghana. The data show that initial local transmission was dominated by B.1.1 lineage, but the second wave was overwhelmingly driven by the Alpha variant. Subsequently, an unheralded variant under monitoring, B.1.1.318, dominated transmission from April to June 2021 before being displaced by Delta variants, which were introduced into community transmission in May 2021. Mutational analysis indicated that variants that took hold in Ghana harboured transmission enhancing and immune escape spike substitutions. The observed rapid viral evolution demonstrates the potential for emergence of novel variants with greater mutational fitness as observed in other parts of the world.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Genome, Viral/genetics , Ghana/epidemiology , Humans , Mutation , Pandemics , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
6.
Front Public Health ; 10: 1035763, 2022.
Article in English | MEDLINE | ID: mdl-36589973

ABSTRACT

Background: The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by asymptomatic individuals has been reported since the early stages of the coronavirus disease 2019 (COVID-19) outbreak in various parts of the world. However, there are limited data regarding SARS-CoV-2 among asymptomatic individuals in Ghana. The aim of the study was to use test data of prospective travelers from Ghana as a proxy to estimate the contribution of asymptomatic cases to the spread of COVID-19. Methods: The study analyzed the SARS-CoV-2 PCR test data of clients whose purpose for testing was classified as "Travel" at the COVID-19 walk-in test center of the Noguchi Memorial Institute for Medical Research (NMIMR) from July 2020 to July 2021. These individuals requesting tests for travel generally had no clinical symptoms of COVID-19 at the time of testing. Data were processed and analyzed using Microsoft Excel office 16 and STATA version 16. Descriptive statistics were used to summarize data on test and demographic characteristics. Results: Out of 42,997 samples tested at the center within that period, 28,384 (66.0%) were classified as "Travel" tests. Of these, 1,900 (6.7%) tested positive for SARS-CoV-2. The majority (64.8%) of the "Travel" tests were requested by men. The men recorded a SARS-CoV-2 positivity of 6.9% compared to the 6.4% observed among women. Test requests for SARS-CoV-2 were received from all regions of Ghana, with a majority (83.3%) received from the Greater Accra Region. Although the Eastern region recorded the highest SARS-CoV-2 positivity rate of 8.35%, the Greater Accra region contributed 81% to the total number of SARS-CoV-2 positive cases detected within the period of study. Conclusion: Our study found substantial SARS-CoV-2 positivity among asymptomatic individuals who, without the requirement for a negative SARS-CoV-2 result for travel, would have no reason to test. These asymptomatic SARS-CoV-2-infected individuals could have traveled to other countries and unintentionally spread the virus. Our findings call for enhanced tracing and testing of asymptomatic contacts of individuals who tested positive for SARS-CoV-2.


Subject(s)
COVID-19 , Male , Humans , Female , COVID-19/diagnosis , COVID-19/epidemiology , SARS-CoV-2 , Cross-Sectional Studies , Ghana/epidemiology , Prospective Studies
7.
Ghana Med J ; 55(2 Suppl): 48-50, 2021 Jun.
Article in English | MEDLINE | ID: mdl-35233114

ABSTRACT

OBJECTIVES: To determine the prevalence of SARS-CoV-2 detection among international travellers to Ghana during mandatory quarantine. DESIGN: A retrospective cross-sectional study. SETTING: Air travellers to Ghana on 21st and 22nd March 2020. PARTICIPANTS: On 21st and 22nd March 2020, a total of 1,030 returning international travellers were mandatorily quarantined in 15 different hotels in Accra and tested for SARS-CoV-2. All of these persons were included in the study. MAIN OUTCOME MEASURE: Positivity for SARS-CoV-2 by polymerase chain reaction. RESULTS: The initial testing at the beginning of quarantine found 79 (7.7%) individuals to be positive for SARS-CoV-2. In the exit screening after 12 to 13 days of quarantine, it was discovered that 26 of those who tested negative for SARS-CoV-2 in the initial screening subsequently tested positive. CONCLUSIONS: Ghana likely averted an early community spread of COVID-19 through the proactive approach to quarantine international travellers during the early phase of the pandemic. FUNDING: None.


Subject(s)
COVID-19 , Quarantine , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , Cross-Sectional Studies , Ghana/epidemiology , Humans , Retrospective Studies , SARS-CoV-2
8.
Ghana Med J ; 55(2 Suppl): 51-55, 2021 Jun.
Article in English | MEDLINE | ID: mdl-35233115

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 is an important subject for global health. Ghana experienced low-moderate transmission of the disease when the first case was detected in March 12, 2020 until the middle of July when the number of cases begun to drop. By August 24, 2020, the country's total number of confirmed cases stood at 43,622, with 263 deaths. By the same time, the Noguchi Memorial Institute for Medical Research (NMIMR) of the University of Ghana, the primary testing centre for COVID-19, had tested 285,501 with 28,878 confirmed cases. Due to database gaps, there were initial challenges with timely reporting and feedback to stakeholders during the peak surveillance period. The gaps resulted from mismatches between samples and their accompanying case investigation forms, samples without case investigation forms and vice versa, huge data entry requirements, and delayed test results. However, a revamp in data management procedures, and systems helped to improve the turnaround time for reporting results to all interested parties and partners. Additionally, inconsistencies such as multiple entries and discrepant patient-sample information were resolved by introducing a barcoding electronic capture system. Here, we describe the main challenges with COVID-19 data management and analysis in the laboratory and recommend measures for improvement. FUNDING: The work was supported by the Government of Ghana.


Subject(s)
COVID-19 , COVID-19/epidemiology , Data Management , Disease Outbreaks , Ghana/epidemiology , Humans , Laboratories , Pandemics , SARS-CoV-2
9.
Exp Biol Med (Maywood) ; 246(8): 960-970, 2021 04.
Article in English | MEDLINE | ID: mdl-33325750

ABSTRACT

The confirmed case fatality rate for the coronavirus disease 2019 (COVID-19) in Ghana has dropped from a peak of 2% in March to be consistently below 1% since May 2020. Globally, case fatality rates have been linked to the strains/clades of circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within a specific country. Here we present 46 whole genomes of SARS-CoV-2 circulating in Ghana, from two separate sequencing batches: 15 isolates from the early epidemic (March 12-April 1 2020) and 31 from later time-points ( 25-27 May 2020). Sequencing was carried out on an Illumina MiSeq system following an amplicon-based enrichment for SARS-CoV-2 cDNA. After genome assembly and quality control processes, phylogenetic analysis showed that the first batch of 15 genomes clustered into five clades: 19A, 19B, 20A, 20B, and 20C, whereas the second batch of 31 genomes clustered to only three clades 19B, 20A, and 20B. The imported cases (6/46) mapped to circulating viruses in their countries of origin, namely, India, Hungary, Norway, the United Kingdom, and the United States of America. All genomes mapped to the original Wuhan strain with high similarity (99.5-99.8%). All imported strains mapped to the European superclade A, whereas 5/9 locally infected individuals harbored the B4 clade, from the East Asian superclade B. Ghana appears to have 19B and 20B as the two largest circulating clades based on our sequence analyses. In line with global reports, the D614G linked viruses seem to be predominating. Comparison of Ghanaian SARS-CoV-2 genomes with global genomes indicates that Ghanaian strains have not diverged significantly from circulating strains commonly imported into Africa. The low level of diversity in our genomes may indicate lower levels of transmission, even for D614G viruses, which is consistent with the relatively low levels of infection reported in Ghana.


Subject(s)
Evolution, Molecular , Genome, Viral , Phylogeny , SARS-CoV-2/genetics , COVID-19/epidemiology , Ghana/epidemiology , Humans , SARS-CoV-2/pathogenicity
10.
Ghana Med. J. (Online) ; 55(2): 51-55, 2021.
Article in English | AIM (Africa) | ID: biblio-1337568

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 is an important subject for global health. Ghana experienced lowmoderate transmission of the disease when the first case was detected in March 12, 2020 until the middle of July when the number of cases begun to drop. By August 24, 2020, the country's total number of confirmed cases stood at 43,622, with 263 deaths. By the same time, the Noguchi Memorial Institute for Medical Research (NMIMR) of the University of Ghana, the primary testing centre for COVID-19, had tested 285,501 with 28,878 confirmed cases. Due to database gaps, there were initial challenges with timely reporting and feedback to stakeholders during the peak surveillance period. The gaps resulted from mismatches between samples and their accompanying case investigation forms, samples without case investigation forms and vice versa, huge data entry requirements, and delayed test results. However, a revamp in data management procedures, and systems helped to improve the turnaround time for reporting results to all interested parties and partners. Additionally, inconsistencies such as multiple entries and discrepant patient-sample information were resolved by introducing a barcoding electronic capture system. Here, we describe the main challenges with COVID-19 data management and analysis in the laboratory and recommend measures for improvement


Subject(s)
Humans , Clinical Laboratory Techniques , Data Management , SARS-CoV-2 , COVID-19 , Real-Time Polymerase Chain Reaction , Ghana
11.
Ghana Med. J. (Online) ; 55(2): 48-50, 2021.
Article in English | AIM (Africa) | ID: biblio-1337633

ABSTRACT

Objectives: To determine the prevalence of SARS-CoV-2 detection among international travellers to Ghana during mandatory quarantine. Design: A retrospective cross-sectional study. Setting: Air travellers to Ghana on 21st and 22nd March 2020. Participants: On 21st and 22nd March 2020, a total of 1,030 returning international travellers were mandatorily quarantined in 15 different hotels in Accra and tested for SARS-CoV-2. All of these persons were included in the study. Main outcome measure: Positivity for SARS-CoV-2 by polymerase chain reaction. Results: The initial testing at the beginning of quarantine found 79 (7.7%) individuals to be positive for SARS-CoV2. In the exit screening after 12 to 13 days of quarantine, it was discovered that 26 of those who tested negative for SARS-CoV-2 in the initial screening subsequently tested positive. Conclusions: Ghana likely averted an early community spread of COVID-19 through the proactive approach to quarantine international travellers during the early phase of the pandemic


Subject(s)
Humans , Quarantine , Air Travel , COVID-19 Serological Testing , SARS-CoV-2 , COVID-19 , Ghana
12.
Ghana Med J ; 54(4 Suppl): 77-85, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33976445

ABSTRACT

BACKGROUND: A novel coronavirus, SARS-CoV-2 is currently causing a worldwide pandemic. The first cases of SARS-CoV-2 infection were recorded in Ghana on March 12, 2020. Since then, the country has been combatting countrywide community spread. This report describes how the Virology Department, Noguchi Memorial Institute for Medical Research (NMIMR) is supporting the Ghana Health Service (GHS) to diagnose infections with this virus in Ghana. METHODS: The National Influenza Centre (NIC) in the Virology Department of the NMIMR, adopted real-time Polymerase Chain Reaction (rRT-PCR) assays for the diagnosis of the SARS-CoV-2 in January 2020. Samples from suspected cases and contact tracing across Ghana were received and processed for SARS-CoV-2. Samples were 'pooled' to enable simultaneous batch testing of samples without reduced sensitivity. OUTCOMES: From February 3 to August 21, the NMIMR processed 283 946 (10%) samples. Highest number of cases were reported in June when the GHS embarked on targeted contact tracing which led to an increase in number of samples processed daily, peaking at over 7,000 samples daily. There were several issues to overcome including rapid consumption of reagents and consumables. Testing however continued successfully due to revised procedures, additional equipment and improved pipeline of laboratory supplies. Test results are now provided within 24 to 48 hours of sample submission enabling more effective response and containment. CONCLUSION: Following the identification of the first cases of SARS-CoV-2infection by the NMIMR, the Institute has trained other centres and supported the ramping up of molecular testing capacity in Ghana. This provides a blueprint to enable Ghana to mitigate further epidemics and pandemics. FUNDING: The laboratory work was supported with materials from the Ghana Health Service Ministry of Health, the US Naval Medical Research Unit #3, the World Health Organization, the Jack Ma Foundation and the University of Ghana Noguchi Memorial Institute for Medical Research. Other research projects hosted by the Noguchi Memorial Institute for Medical Research contributed reagents and laboratory consumables. The funders had no role in the preparation of this manuscript.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , Infection Control/methods , Population Surveillance , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , Contact Tracing/methods , Contact Tracing/statistics & numerical data , Ghana/epidemiology , Humans , National Health Programs , SARS-CoV-2/genetics
13.
J Infect Dis ; 206 Suppl 1: S108-13, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23169955

ABSTRACT

BACKGROUND: The global annual attack rate for influenza is estimated to be 10%-20% in children, although limited information exists for Africa. In 2007, Ghana initiated influenza surveillance by routine monitoring of acute respiratory illness to obtain data on circulating strains. We describe influenza surveillance in children <11 years old who had influenza-like illness (ILI) from January 2008 to December 2010. METHODS: Oropharyngeal swabs from pediatric outpatients with ILI attending any of 22 health facilities across the country were submitted. We tested swabs for influenza virus using molecular assays, virus isolation, and hemagglutination assays. RESULTS: Of the 2810 swabs, 636 (23%) were positive for influenza virus. The percentage of positives by gender was similar. The proportion of ILI cases positive for influenza increased with age from 11% (31/275) in infants (aged 0-1 years) to 31% (377/1219) among children aged 5-10 years (P < .001). The majority of cases were influenza A (90%), of which 60% were influenza A(H1N1)pdm09. In all 3 years, influenza activity appeared slightly higher during May through July. CONCLUSIONS: During the 3 years of influenza surveillance in Ghana, children aged <11 years bore a high burden of influenza-associated ILI.


Subject(s)
Influenza, Human/epidemiology , Orthomyxoviridae/isolation & purification , Africa , Antigens, Viral/analysis , Child , Child, Preschool , Female , Genotype , Ghana/epidemiology , Hemagglutination Inhibition Tests , Humans , Infant , Infant, Newborn , Male , Oropharynx/virology , Orthomyxoviridae/genetics , Orthomyxoviridae/immunology , Prevalence , RNA, Viral/genetics , Virus Cultivation
14.
BMC Public Health ; 12: 957, 2012 Nov 08.
Article in English | MEDLINE | ID: mdl-23137234

ABSTRACT

BACKGROUND: Influenza A viruses that cause highly pathogenic avian influenza (HPAI) also infect humans. In many developing countries such as Ghana, poultry and humans live in close proximity in both the general and military populations, increasing risk for the spread of HPAI from birds to humans. Respiratory infections such as influenza are especially prone to rapid spread among military populations living in close quarters such as barracks making this a key population for targeted avian influenza surveillance and public health education. METHOD: Twelve military barracks situated in the coastal, tropical rain forest and northern savannah belts of the country were visited and the troops and their families educated on pandemic avian influenza. Attendants at each site was obtained from the attendance sheet provided for registration. The seminars focused on zoonotic diseases, influenza surveillance, pathogenesis of avian influenza, prevention of emerging infections and biosecurity. To help direct public health policies, a questionnaire was used to collect information on animal populations and handling practices from 102 households in the military barracks. Cloacal and tracheal samples were taken from 680 domestic and domesticated wild birds and analysed for influenza A using molecular methods for virus detection. RESULTS: Of the 1028 participants that took part in the seminars, 668 (65%) showed good knowledge of pandemic avian influenza and the risks associated with its infection. Even though no evidence of the presence of avian influenza (AI) infection was found in the 680 domestic and wild birds sampled, biosecurity in the households surveyed was very poor. CONCLUSION: Active surveillance revealed that there was no AI circulation in the military barracks in April 2011. Though participants demonstrated good knowledge of pandemic avian influenza, biosecurity practices were minimal. Sustained educational programs are needed to further strengthen avian influenza surveillance and prevention in military barracks.


Subject(s)
Health Knowledge, Attitudes, Practice , Influenza A virus , Influenza in Birds/prevention & control , Influenza, Human/epidemiology , Military Facilities , Military Personnel/education , Animals , Birds , Cross-Sectional Studies , Female , Ghana/epidemiology , Humans , Influenza A virus/isolation & purification , Influenza in Birds/epidemiology , Influenza, Human/prevention & control , Male , Military Personnel/psychology , Patient Acceptance of Health Care/statistics & numerical data , Population Surveillance , Reverse Transcriptase Polymerase Chain Reaction/methods , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...